Respondent's Exhibit 6

E b the g

X:

Minnesota Pollution Control Agency

September 7, 2005

Mr. Gene Jensen Vice President Fox Packaging 51 East Maryland Avenue St. Paul, MN 55117

Dear Mr. Jensen:

The purpose of this letter is to inform you that Minnesota Pollution Control Agency (MPCA) staff considers the method of calculating Hazardous Air Pollutant (HAP) emissions from your facility described in Wenck's technical memorandum dated August 30, 2005, acceptable. Please submit an application for a Capped Air Permit by October 3, 2005.

This determination was based on several factors. MPCA staff acknowledges that a material balance only works in cases where the loss rate is measurable, that is, when the difference between usage and losses is large enough to be measured by purchase and shipment records or similar data. Further, material balance typically works in cases where the loss is intentional, planned, or defined in some way. One example is solvent in a paint. The solvent is intended to be a carrier and is intentionally driven off in the process. The loss rate is relatively large compared to amount of materials purchased, and therefore is measurable. Further, it is assumed that all paint solvent is driven off. Therefore, a mass balance calculation is straightforward: amount of paint purchased multiplied by the percent solvent assuming 100 percent lost to evaporation.

At Fox Packaging, the material purchased is the product. It is diluted, put in bottles and no loss is intended. Therefore, no assumption about loss can be made or inferred from the intended use (such as 100 percent loss for paint solvents). Further, the volume purchased is so large that trying to attempt a mass balance is not practical. For 2004 the purchased amount of methanol was 10,736,000 gallons, or 70,694,524 lbs. The calculated losses of 4.61 tons per year based on the measurements taken in May 2005 amount to approximately 0.013 percent loss. MPCA staff acknowledges this would not be measurable via mass balance.

Any attempt at using a mass balance would also have to address the addition of water for dilution (millions of lbs). The shipments include the water and that would have to be subtracted out. It is unlikely that the dilution rate is exact (at levels approaching 0.013 percent), therefore, trying to use receipts, less shipments (minus water) would likely include significant error in just the water amounts and the results would not be accurate enough to provide good data for methanol at the levels necessary for consideration in air permitting applicability.

520 Lafayette Rd. N.; Saint Paul, MN 55155-4194; (651) 296-6300 (Voice); (651) 282-5332 (TTY); www.pca.s tate.mn.us St. Paul • Brainerd • Detroit Lakes • Duluth • Mankato • Marshall • Rochester • Willmar

Equal Opportunity Employer • Printed on recycled paper containing at least 20 percent fibers from paper recycled by consumers.

Facility Name:	B Bros Packaging Inc/Fox Packaging Inc	c Inventory Contact:	Gene Jensen
Location Street Address:	51 Maryland Ave E	Job Title:	General Manager
City/ZIP:	St. Paul 55117	Mail Address:	51 Maryland Ave E
County:	Ramsey	City/St/ZIP:	St. Paul, MN 55117
	14		. *
3 2		Contact Phone:	(651) 393-2781
2		Contact Fax:	(651) 489-8247
•		Contact E-Mail:	<i>D</i>

I certify under penalty of law that this document and all attachments were prepared under my direction or supervised by qualified personnel. The Information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I understand that the data provided in this document will be used by the MPCA to calculate a fee, which my facility will be required to pay under Minnesota Rules, part 7002.0025, based on tons of pollutants emitted by the facility.

General Manger Date: 8-11-06 Signature and Title of Company Official (please write):

Name and Title of Company Official (please print):	Gene Jensen	General	manger
Thanke and The of company emerge		and the second	

Return To: Paul Kim (651) 296-7320

or Michael Smith (651) 282-5849 Minnesota Pollution Control Agency Environmental Analysis and Outcomes Division Environmental Data Management Unit 520 Lafayette Road N St. Paul, MN 55155-4194

Minnesota Pollution Control Agency

Operating Schedule

	Average	Working S	Schedule		<u>%</u> A	nnual T	'hrougt	put
	Percent	Hours	Days	Hours	Dec-	Mar-	Jun-	Sep-
	Heating	Per	Per	Per	Feb	May	Aug	Nov
		Day	Week	Year				
EU 001 Polyethy Pellet		16	5	5000	36	14	14	36
EU 002 Methanol Washer		16	5	5000	36	14	14	36
EU 003 IPA Fill Line		16	5	5000	3 C	14	14	26
EU 004 Methanol Washer		16	5	5000	36	14	14	36
EU 005 Co-Ray-Vac Heating	-	16	5	5000	36	14	14	36
EU 006 Ethylene Glycol		æ	Q	Q	R	R	R	x
TK 001 Isopropanol		16	5	5000	36	14	14	36
TK 002 Methanol		16	5	5000	36	14	14	36

Minnesota Pollution Control Agency

Throughput Information

				and the second		
Unit	Unit	Segment	Throughput	Throughput	Sulfur	Ash
2	Description	Description		Units	%	%
EU 001	Polyethy Pellet	Bottle forming Torks	2338	Tons of product		
EU 002	Methanol Washer	Methanol Goll-1	5,569000	Tons solvent		
EU 003	IPA Fill Line	Isopropanol 5 , 1/2 4	96921	Tons solvent		
EU 004	Methanol Washer	Washer mixing 57//48	5.569012	Tons solvent		
EU 005	Co-Ray-Vac Heating	Natural Gas	2.7	Million cubic feet burned		
EU 006	Ethylene Glycol	Storage	à	Tons product		
TK 001	Isopropanol	Standing loss	1	1000 gallons storage capa	12	
TK 001	Isopropanol	Working loss	20.54	1000 gallons throughput		
тк 002	Methanol	Standing loss	9.43	1000 gallons storage capa		
тк 002	Methanol	Working loss	1556	1000 gallons throughput		-

* Note: Throughput is Tatar Production

Fox Packaging St. Paul MN

Monthly Data for Emissions Calculations

		Methanol Related	d Sources		Isoproanol Related	Sources	Bleach	Bottle	Natural
		Methanol Used	Square Line	Round Line	Isopropanol Used	Gas Line	Operations	Forming	Gas Use
Month	Year	Gallons	Hours	Hours	ਂ Gallons**	Hours	Hours	Tons	1000 cf
January	2005	852,162	420	412	10,435	168	8	566,064	
February	2005	446,756	210	186	4,648	84	24	339,738	
March	2005	143,658	168	155	0	0	13	148,231	
April	2005	77,815	126	102	0	0	24	129,757	
Мау	2005	174,499	126	95	1,013	12	31	159,917	1
June	2005	84,426	126	91	1,062	12	35	151,865	
July	2005	154,279	126	91	0	0	35	161,623	
August	2005	390,477	210	181	9,311	160	29	428,814	
September	2005	362,870	. 210	200	21,158	336	10	392,995	
October	2005	417536	210	178	16,889	294	32	489,116	20
November	2005	615904	336	322	11,806	210	14	459,077	
December	2005	915451	420	412	7,388	147	8	613,034	
November	2004	375,711	210	195	8,650	155	15	269,127	
December	2004	557,288	336	318	4,561	83	ା 18 ୁ	367,323	
Sum		5568832	3234	2938	96921	1661	296	4676681	0

*This is methanol bottled - prior to dilution. i.e. the value is methanol, not diluted methanol. **This is isopropanol bottled - prior to dilution. i.e. the value is isopropanol, not diluted isopropanol

NDS "Estimated mixing room non-op hrs 'After hours general exhaus Safety Factor Production Rate ft3/m3 molecular weight methanol There is a general exhaust located in the vicinity of each filling station. Operations also include a small 'gas' line that fills 10 oz bottles with isoproanol or methanol - used for gasoline additives. Actual Methanol Emission Calculations based on May 2005 Testing 2004 Actual Emission Calculations ideal Gas Law value Calculation Emission Rate Calculation Methanol is a hazardous air pollutant and therefore emission cacluations for methanol are most important to this permitting analysis Operations are seasonal. 2 filling stations run in winter months when demand is high: The facility receives methanol, dilutes it and fills primarily 1 gallon bottles at a rate of 90 bottles/minute. PA calcs on separate sheet Material from the mixing room goes to filling stations. Methanol is received and held in rail cars. The rail cars are treated as tanks and TANKS calculations conducted rea gallon bottles are filled at 2 filling stations - the square line (square bottles, line 1) and the round line (round bottles, line 2) Aethanol is taken in from the rail car to the mixing room where it is diluted. The mixing room is a separate enclosed room. eneral Exhaust non-operating hours Mixing Room non-operating hours Ixing Room during operation eneral Exhaust during operations ixing Room during operation Aixing Room non-operating hours Filling Stations ling station 1 during operation General Exhaust during operations - Round Line Seneral Exhaust during operations - Square Line il Exhaust non-operating hours - Square Line Extra tethanol ralicars - raw material Jet non-operating hours - Round Line Operating and non-operating hours from prior sampling were Prior sampling did include non-operating hours for the mixing room Operating and non-operating hours for general exhaust show: Sampling during non-operating hours in the mixing room was not conducted runs 15 minutes every 2 hours during non-operating periods MW * ppm / ideal gas volume = mg/m3 During non-operating hours emissions decrease because the tank is not filling and emptying. (8760-operating hours)* .25 hours/2 hours production 10,736,000 10,736,000 gailons Methanoi Value, Nonitored ppm as 2004 91.9 210 പ്പ ≣ na 22 1.91 9.43 na Ra 10% 90.0 bottle/min 35,3 conversion factor 32.1 lbs/lb-mole 24.5 ilters/gram-mole @ 25C and 760 mmHg Value, ppm as 2004 hours Estimated methanol 5000 970 3760 4000 595 na 000 na na 2 42 Na na With Safety methanol/ Ξ. Factor 0.780 0.080 0.049 year tons 4.608 1.403 231.0 46.2 .407 0.4 N 049 1 gal/bottle needs to be less than 8 tons from TANKS' runs in 2004 AEI Hours = sum of Square Line and Round Line Methanol mg/m3 302.68 60.53 13.59 132.45 2.75 Fan rate ft3/min 6000 8000 495 8 90 gal/mln methanol/ 0.00935 minute 0.00275 1.01357 iba 9.43 806 methanoV hr operation 0.814 0.165 0.112 0.56 Ta ibs 1.92 75 gailon filled methanol/ 19E-08 na ĝ na R na 20% 8% Fan operates during operation only Notes operating day for 10 hours, so this is a conservative value. Fan operates et all times fan runs 15 minutes per 2 hours; tested starting at end of Full time during operation, 1 fans @ 16,000 each Estimated from current and past data, see below Production is consistent while running.

FOX PACKAGING

Based on data summarized here a 20% estimate of the operation hours is used. t is located inside in a separate room and is therefore not subject to significant breathing losses.

ц 2

T:11467003State Capped Permit App\/Actual Calca.ule.uls/methenol

FOX PACKAGING

Actual Methanol Emission Calculations based on May 2005 Testing

***Filling Stations

There are two filling stations. Each is a similar operation and is similarly vented. 10 oz bottles may also be filled at the 'gas ilne'. Again, such operations are similarly vented. Results for Filling station 1 are therefore assumed for all stations and applied to total production.

****General Exhaust

There are two general extraust fans. One is located near filling station 1 - square line. This is where sampling was done. The other is located near filling station 2 - round line. Filling station 2 was not operating during sampling. It is assumed that during operation of filling station 2, the air concentration near the 2nd fan will be similar to that of the fan in the filling station 1 area. The general exhaust emission was calculated based on sampling and hours of operation for each filling station. Any addition to general exhaust from the gas line will be negligible as gas line operations are at a rate that is less than 1% of main filling line stations (see rates on isopropand) sheet).

3-3

12

FOX PACKAGING Actual isopropanol Emission Calculations

10 oz bottles of isopropanol are filled on a small filling tine Results for methanol are converted to IPA on a vapor pressure basis to determine IPA emissions. IPA is a VOC but not e HAP and therefore, emissions determiations are less critical.

	Emission Rate Calculation molecular weight methanol Molecular weight isopropanol Partial pressure of 38% methanol Vapor pressure of IPA fi3/m3 Production Rate filling station Production Rate gas line Safely Factor
Monitored Value, ppm as	32.1 60 31.9 35.3 90.0 8.76 8.76
With Safety Factor	from prior any from prior any bottle/min bottle/min
Monitored Value, w/SF converted to IPA. ppm	alysis at FOX alysis at FOX 10
Adjusted based on process rate, ppm	gal/bottle oz/bottle
Fan rate f13/min	0 0 80
lbs iPA/mln	gal/min gal/min
ibs IPA /hr	Production Is 8400 bottles
ibs IPA /galion filled	consistent wi 18 hours
Notes	nie running.

1 1	ରା	ରା	#1	>		-
	eneral Exhaust non-operating hours	eneral Exhaust during operations	A Filling station 1 during operation	rea		
KUNC	1.91	9.43	91.9	Methanof	ppm as	Yaina,
	2.1	10.4	101.1	Factor	With Safety	
tone	2.17	10.73	104.58	IPA, ppm 🔹	converted to	a dinaj mici
-	0.02	0.08	na	rate, ppm	process	
	16000	16000	100	ft3/min	Fan rate	
	0.00002	0.00008	0.00065	Ibs iPA/min		
8	0.001	0.005	na	operation	hr	
	na	na	9.555-04	filled	/gallon	
	arnou z jad samulu ci.	Full time during operation, 2 lans @ 10,000 each	ran operates during operation only	Notes		

	0.164			SUM
from 'TANKS' runs in 2004 AEI	0.120			Tanks - IPA rallcars - raw material
see notes from methanol calcs	0.00023	470	na	General Exhaust non-operating hours
see notes from methanol calcs	0.012	5000	na	General Exhaust during operations
	0.0311	na	65,224	Filling Station - gas line
				Area
	year	2004 hours	galions	2004 Actual Emission Calculations
	Isopropanol/		production	

Process rate adjustment - ratio of filling station and gas line rates. The gas line is located near one general exhaust vent. The other one is quite distant. Therefore only one vent is considered. No mixing room is related to the IPA process.

T:11487103/State Capped Permit App\Actual Calcaute.sta]seprepared

4 :

ĩ

	Other Process Data - not used in above worst case c Fox transfers to 1 gallon bottle for sale Sodium Hypochlorite Received and Bottled at: Rate Specific Gravity	<u>Emission Calculation at OSHA Rate</u> Ventilation Rate - exhaust rate when line in operation. Amount in ainflow at OSHA limit, Iba/min Convert to Ibs/hr at OSHA Limit Ibs/yr based on operating hours/year tons/yr based on operating hours/year	Operating hours 2004	<u>Convert to Ibs/113:</u> ft3/m3 Ibs/ft3	<u>Calculation - MW * ppm / Ideal gas volume = ms/m3</u> Ideal Gas Law value mg/m3	MN OSHA Ceiling Limit - 8-hr TWA MW		Bleach can release CI gas In the precense of an acid. So CI is a HAP and therefore emissions should be quantified A worst case calulcation using the OSHA maximum 8-hr This value is a hypothetical maximum and actual values s Theoretically HCI could also be emitted. HCI is also a H4	Fox Packaging also operates a Bleach Line. It operates on The line takes bleach received as a dilute solution of Na The dilute solution received is not further diluted.	FOX PACKAGING Actual Emission Calculations from Bleach Line Operation
NaOCI	<u>liculation.</u> NaOCI 5. 1. 1.	87 0.000 0.0 5. 0.00	N	4.52E-	0.24	35.	Chiorine 7782-50-5	nall amounts evel is used b hould be lowe .P. Therefore	only a limited a OCI and puts	
22.9 1 35.4 74.4	material is not diluted 7681-52-9 25 % 27 bottle/min 1 gallon/bottle 27 gallons/min NaOCI 27 lbs/min NaOCI 21 na 21 na 21 na 21 na 21 na	53 ft3/min 69 lbs/min 24 lbs/yr 50 lbs/yr 28 lons/yr	29 daysiyear 8 hrs/day 32 hrs/yr	08 lbs/ft3	1.5 Ilters/gram-mole @ 25C and 760 mmHg 72 mg/m3 = ppm * MWI24.5	1.5 ppm 45		of CI gas may be emitted. velow to delermine a worst case CI emisison ar. , a maximum calculation is included for HCI t	amount of time - see below. It in 1 gallon bottles for sale.	Ŧ
۵ 6 7 4	æ	8753 0.00406 56.57 0.0283	23	35.3 4.64E-07	24.5	6 36.46	HCI	rate. as welf		
		3 ft3/mln 3 lbs/mln 4 lbs/hr 7 lbs/yr 7 lbs/yr	9 daysiyear 9 hrs/day 2 hrs/yr	3 conversion factor 7 lbs/ft3	s liters/gram-mole @ 25C and 760 mmHg t mg/m3 = ppm * MW/24.5	5 ppm			5	
	ŭ	- ₇₆								

3-5

TA1487031State Capped Permit Appl(Actual Calcaute.sts)Bleech

FOX PACKAGING Actual Emission Calculations from Bottle Forming

PM, PM10, VOC from Bottle Forming

Unit	Pollutant	lbs/ton formed	Tons Formed 2004	tons/year
EU001	PM	0.27	1645	0.22
EU001	PM10	0.27	1645	0.22
EU001	VOC	30	1645	24.68
	2		(, B ¹	100 A

Emission Factors from prior emissions inventories

FOX PACKAGING Actual Emission Calculations from Space Heating

Natural Gas Fuel Usage - Space heating

Fuel Use

2.7 million ft3

		PM	PM10	NOX	SO2	CO	VOC	Lead
Emission Factors	lbs/million ft3	7.6	7.6	100	0.6	84	5.5	0.0005
Emissions	Tons per year	0.010	0.010	0.14	0.00081	0.11	0.0074	6.75E-07

Emission factors from AP-42 Chapter 1.4

HAPs from natural gas space heating are assumed to be negligible due to low level of use.

T:\148703\State Capped Permit App\[Actual Calcs.xls.xls]Spaceheat

;

FOX PACKAGING Acutal Emissions Summary - 2004 (Limited and Controlied*)

Substitute CAP-GI-07

	IPM		D×	SO2	ico	Ivoc	Lead	Methanol	<u>0</u>	HCI	SUM HAPs
Bottle Forming	0.22	0.22		19		24.68				1917 1917	0
Filling Lines & general exhaust				. :		2.21		2.21			2.21
Mixing Room						1.61		1.61		\$	1.61
Gas Line & general exhaust						0.04					0
Methanol Tanks						0.78		0.78			0.78
IPA Tanks	10					0.12					0
Bleach Line		100		5					0.0028	0.028	0.031
Space heating	0.010	0.010	0.14	0.00081	0.11	0.0074	6.75E-07				6.75E-07
SUM	0.23	0.23	0.14	0.00	0.11	29.45	6.75E-07	4.61	0.0028	0.028	4.64
Major Title V Source Thresholds	100	100	100	100	100	100	0.5	10	10	10	25
Capped Permit Thresholds	75	75	06	85	85	85	0.5	8	8	8	20
(if below major source and capp	ed permit th	nesholds may	get state	capped pe	mit which I	imits emissic	ons to below	r those thres	holds)		

*Emission units are not limited and do not have controls.

ა -8

T:\1487\03\State Capped Permit App\Actual Calca.xis.xisjsum

1114874031State Capped Permit App\PTE Calcaudauda)methenol

Assumed zero hours of non-operating general exhaust for potential emissions.

runs 15 minutes every 2 hours during non-operating periods

13.188 Potential from TANKS' using 10,736,000 gal * (17,520 hrs / 5,000 hrs (2004))

0.780

(8760-operating hours)* .25 hours/2 hours

*After hours general exhaust

SUM

ral Exhaust non-operating hours - Round Line

methanol rallcars - raw material

,736,

000

970 na ,000

> 0.080 0.049 0.407

₽ na B B

na

neral Exhaust during opera

al Exhaust non-operating hours - Square Line reral Exhaust during operations - Round Line

2004 Actual Emission Calculations

production gallons 0,736,000

2004 hours

methanol

production Potential gallons

Potential

methanol minute

bs

Hours

tons/year methanol Potential

year tons

2004

ixing Room during operation fixing Room non-operating hours ieneral Exhaust during operations - Square Line

na

000 Пa

1.403

R

17,520 8,760

0.00083

3,780 4,000 595

0.211

na na na a

8,760 8,760

0.00187 0.01357 0.00275

3.567 0.435

c

0.01357

na na

Iling Stations

618,944 ,520 na

.182

0.00275 Actual from TANKS' runs in 2004 AEI

3.587

operating day for 10 hours, so this is a conservative value						-			
fan runs 15 minutes per 2 hours; tested starting at end of	na	0,165	0.00275	16000	2.75	2.1	na	1.91	General Exhaust non-operating hours
Full time during operation, 1 fans @ 18,000 each	na	0.814	0.01357	16000	13.59	10.4	na	9.43	General Exhaust during operations
Estimated from current and past data, see below	na	0.112	0.00187	495	60.53	46.2	42	na	**Mixing Room non-operating hours
Fan operates at all times	na	0.581	0.00935	495	302.66	231.0	na	210	Mixing Room during operation
Fan operates during operation only	9.19E-06	na	0.00083	100	132.45	101.1	na	91.9	Filling station 1 during operation
Notes	gallon filled	operation	minute	ft3/mln	mg/m3	Factor	methanol	Methanol	Area
	methanol	methanol/ hr	methanol	Fan rate	Methanol	With Safety	Value, ppm as	ppm as	
	lbs	lbs	ibs				Estimated	Value,	
					58			Monitored	

Production is consistent while running.

3-0

90.0 bottle/min 10% 35.3 conversion factor 32.1 lbs/ib-mole 24.5 liters/gram-mole @ 25C and 780 mmHg 1 gal/bottle

MW * ppm / ideal gas volume = mg/m3

ft3/m3

Safety Factor Production Rate molecular weight methanol

Ideal Gas Law value Calculation

Emission Rate Calculation

Methanol is a hazardous air pollutant and therefore emission cacluations for methanol are most important to this permitting analysis. There is a general exhaust located in the vicinity of each filling station.

Operations also include a small 'gas' line that fills 10 oz bottles with isoproanol or methanol - used for gasoline additives

Operations are seasonal. 2 filling stations run in winter months when demand is high.

Material from the mixing room goes to filling stations.

PA calcs on separate sheet.

Potential Methanol Emission Calculations based on May 2005 Testing

FOX PACKAGING

The facility receives methanol, dilutes it and fills primarily 1 gallon bottles at a rate of 90 bottles/minute. Methanol is received and held in rail cars. The rail cars are treated as tanks and TANKS calculations conducted.

Methanol is taken in from the rail car to the mixing room where it is diluted. The mixing room is a separate enclosed room.

galion bottles are filled at 2 filling stations - the square line (square bottles, line 1) and the round line (round bottles, line 2)

90 gal/min

FOX PACKAGING

Potential Methanol Emission Calculations based on May 2005 Testing

****General Exhaust ***Filling Stations **Estimated mixing room non-op hrs There are two general exhaust fans. One is located near filling station 1 - square line. This is where sampling was done. The other is located near filling station 2 - round line. Filling station 2 was not operating during sampling. It is assumed that during operation of filling station 2, the air concentration near the 2nd fan will be similar to that There are two filling stations. Each is a similar operation and is similarly vented. 10 oz bottles may also be filled at the 'gas line'. Again, such operations are similarly vented. Results for Filling station 1 are therefore assumed for all stations and applied to total production. The general exhaust emission was calculated based on sampling and hours of operation for each filling station. Any addition to general exhaust from the gas line will be negligible as gas line operations are Assumed 2 x 8,760 hours = 17,520 hours to account for both filling stations' potential to emilt. Operating and non-operating hours for general exhaust show: Prior sampling did include non-operating hours for the mixing room of the fan in the filling station 1 area. Sampling during non-operating hours in the mixing room was not conducted. Assumed zero hours of mixing room non-operating hours for potential emissions. It is located inside in a separate room and is therefore not subject to significant breathing losses. Operating and non-operating hours from prior sampling were Based on data summarized here a 20% estimate of the operation hours is used. During non-operating hours emissions decrease because the tank is not filling and emptying. 9,43 808 1.92 76 20% %8

at a rate that is less than 1% of main filling line stations (see rates on isopropanol sheet). Assumed 8,760 hours for both square and round lines' general exhaust potential emissions.

3-10

amit Appi(PTE Calcauda.xts)methenol

FOX PACKAGING Potential Isopropanol Emission Calculations

10 oz bottles of isopropanol are filled on a small filling ilne Results for methanol are converted to IPA on a vapor pressure basis to determine IPA emissions. IPA is a VOC but not a HAP and therefore, emissions determiations are less critical.

SUM	Tanks - IPA railcars - raw material	General Exhaust non-operating hours	General Exhaust during operations	Filling Station - gas line	Area	2004 Actual Emission Calculations		
	85,224	na	na	65,224		gallons	production	2004
	TH81	470	5000	กอ		2004 hours		
0.164	0.120	0.00023	0.012	0.0311		year	Isopropanol/	tons
11	114,272	na	na	na		gallons	production	Potential
	8,780	0	8,760	8,760		Hours	Potential	
2	na	0.00002	0.00008	0.00065		minute	Isopropanol	lbs
0.320	0.127	0	0.021	0.172	3	tons/year	Isopropanol	Potential
Potential from TANKS' using 65,224 gai * (6,760 hrs / 5,000 hrs (2004))	Actual from TANKS' runs in 2004 AEI	see notes from methanoi calcs	see notes from methanol calcs					

Process rate adjustment - ratio of filling station and gas line rates. The gas line is located near one general exhaust vent. The other one is quite distant. Therefore only one vent is considered. No mixing room is related to the IPA process.

11/14870335bits Capped Permit AppVPTE Calca.xda.xds)sopropend

3-11

T:\148703\State Capped Permit App\PTE Calcs.xis.xisjBleach	MW	Specific Gravity	Sodium Hypochlorite	<u>Emission Calculation at OSHA Rate</u> Ventilation Rate - exhaust rate when line in operation. Amount in airflow at OSHA limit, lbs/min Convert to lbs/hr at OSHA Limit lbs/yr based on operating hours/year tons/yr based on operating hours/year	Potential operating hours	<u>Convert to Ibs/it.s.</u> ft3/m3 lbs/ft3	<u>Calculation - MVV " ppm / ideal gas volume = mg/ma</u> Ideal Gas Law value mg/m3	MN OSHA Ceiling Limit - 8-hr TWA	त ्रियः २	Bleach can release Cl gas in the precense of an acid. Cl is a HAP and therefore emissions should be quantifie A worst case calulcation using the OSHA maximum 8-hi This value is a hypothetical maximum and actual values Theoretically HCl could also be emitted. HCl is also a H	Fox Packaging also operates a Bleach Line. It operates The line takes bleach receieved as a dilute solution of N The dilute solution received is not further diluted.	FOX PACKAGING Potential Emission Calculations from Bleach Line Opera
ti R _{ind}	Na CI NaOCI	1.21 0.00	NaOCI	8753 0.00040 0.024 207.76 0.1039	8,760	35.3 4.52E-08	24.5 0.72	0.5 35.45	Chlorine 7782-50-5	Small amounts c d. level is used be should be lowe AP. Therefore,	only a limited a aOCl and puts l	tion
3-12	22.99 16 35.45 74.44	na) lbs/min NaOCI) lbs/hr NaOCI, processed	7681-52-9	l ft3/min lbs/min lbs/hr lbs/yr ltons/yr	hrs/yr	conversion factor lbs/ft3	liters/gram-mole @ 25C and 760 mmHg mg/m3 = ppm * MW/24.5	ppm		of Cl gas may be emitted. slow to determine a worst case Cl emIsIsor r. a maximum calculation is included for HCl	mount of time - see below. t in 1 gallon bottles for sale.	r K
				8753 0.00406 0.244 2136.17 1.0681	8,760	35.3 4.64E-07	24.5 7.44	36.45	HCI	ı rate. as well		
	н р •	2 20 10		3 ft3/min 3 lbs/min 4 lbs/hr 7 lbs/yr 7 lbs/yr) hrs/yr	conversion factor / lbs/ft3	iliters/gram-mole @ 25C and 760 mmHg mg/m3 = ppm * MW/24.5					-

ŗ

•

.

r e

÷.,

FOX PACKAGING Potential Emission Calculations from Bottle Forming

VOC from Bottle Forming 111 bottles/min 110 grams/bottle 12,210 grams/min 27 lbs/min

24.23	106.11	7,074	30	VOC	EU001
0:22	0.96	7,074	0.27	PM10	EU001
0.22	0.96	7,074	0.27	PM	EU001
lb/hr	tons/year	Formed	formed	Pollutant	Unit
	5	Tons	lbs/ton		

Emission Factors from prior emissions inventories

FOX PACKAGING

Potential Emission Calculations from Insignificant Activity Combustion Sources

Natural Gas Fuel Usage - IA Combustion Sources

Production Area	2,100,0
Space Heating	1,0
	2 058

2,100,000 Btu/hr (7 @ 300,000 Btu/hr) 1,020 Btu/scf 2,058.82 scf/hr 18.04 mmscf/yr

		PM	PM10	NOx	SO2	CO	VOC	Lead
Emission Factors	lbs/million ft3	7.6	7.6	100	0.6	84	5.5	0.0005
Emission Rate	lbs/hr	0.016	0.016	0.206	0.001	0.173	0.011	1.03E-06
Emissions	Tons per year	0.069	0.069	0.902	0.005	0.757	0.050	4.51E-06
· · · · · · · ·	15			0.029	lb/hr per u	nit		

Warehouse Space Heating 2,760,000 Btu/hr (10 @ 276,000 Btu/hr) 1,020 Btu/scf

2,705.88 scf/hr

23.70 mmscf/yr

		PM	PM10	NOx	SO2	CO	VOC	Lead
Emission Factors	lbs/million ft3	7.6	7.6	100	0.6	84	5.5	0.0005
Emission Rate	lbs/hr	0.021	0.021	0.271	0.002	0.227	0.015	1.35E-06
Emissions	Tons per year	0.090	0.090	1.185	0.007	0.996	0.065	5.93E-06
				0.027	lb/hr per ur	nit		

Furnace

0. 80,000 Btu/hr (1 @ 80,000 Btu/hr) 1,020 Btu/scf 78.43 scf/hr 0.69 mmscf/yr

n kulta lata ja	329	PM	PM10	NOx	SO2	CO	VOC	Lead
Emission Factors	lbs/million ft3	7.6	7.6	100	0.6	84	5.5	0.0005
Emission Rate	lbs/hr	0.001	0.001	0.008	4.71E-05	0.007	4.31E-04	3.92E-08
Emissions	Tons per year	0.003	0.003	0.034	2.06E-04	0.029	1.89E-03	1.72E-07

Hot Water Heater 40,000 Btu/hr (1 @ 40,000 Btu/hr) 1,020 Btu/scf

39.22 scf/hr 0.34 mmscf/yr

		PM	PM10	NOx	SO2	CO	VOC	Lead
Emission Factors	lbs/million ft3	7.6	7.6	100	0.6	84	5.5	0.0005
Emission Rate	lbs/hr	2.98E-04	2.98E-04	0.004	2.35E-05	0.003	2.16E-04	1.96E-08
Emissions	Tons per year	0.001	0.001	0.017	1.03E-04	0.014	9.45E-04	8.59E-08

Co-Ray-Vac Burner System 1.08 MMBtu/hr 1,020 Btu/scf 9.28 MMscf/yr

		PM	PM10	NOx	SO2	CO	VOC	Lead
Emission Factors	lbs/million ft3	7.6	7.6	100	0.6	84	5.5	0.0005
Emission Rate	lbs/hr	0.008	0.008	0.102	0.001	0.086	0.006	5.10E-07
Emissions	Tons per year	0.035	0.035	0.464	0.003	0.390	0.026	2.32E-06

Total Insignificant Activity Combustion Emissions

		PM	PM10	NOx	SO2	CO	VOC	Lead
Emissions	Tons per year	0.198	0.198	2.602	0.016	2.186	0.143	1.30E-05

Emission factors from AP-42 Chapter 1.4

HAPs from natural gas IA combustion sources are assumed to be negligible due to low level of use.

FOX PACKAGING Potential Emissions Summary (Limited and Controlled*)

Substitute CAP-GI-07

0.96 0.96 106.11 0.96 7.57 7.57 1 7.57 2.46 1 1 0.19 1 1 1 1 <td< th=""><th>-</th><th>10</th><th>10</th><th>0.5</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>Major Title V Source Thresholds</th></td<>	-	10	10	0.5	100	100	100	100	100	100	Major Title V Source Thresholds
0.96 0.96 106.11 0.96 7.57 7.57 0.19 2.46 2.46 0.19 0.19 3.16 0.19 0.13 3.16 0.198 0.198 0.016 2.19	co l	0.103	13.19	1.3E-05	119.76	2.19	0.02	2.60	1.15	1.15	SUM
0.96 0.96 106.11 0.96 7.57 7.57 7.57 2.46 2.46 0.19 0.19 3.16 0.13 0.13 0.1035	-			1.3E-05	0.1431	2.19	0.016	2.60	0.198	0.198	Space heating
0.96 0.96 106.11 0.96 0.96 7.57 7.57 0.10 2.46 2.46 2.46 0.19 0.19 3.16 3.16 0.13 0.13 0.13 0.13		0.1039					8				Bleach Line
0.96 0.96 106.11 7.57 7.57 7.57 0.19 2.46 2.46 0.19 0.19 3.16	1				0.13					2	IPA Tanks
0.96 0.96 106.11 7.57 7.57 2.46 2.46 0.19 0.19			3.16		3.16						Methanol Tanks
0.96 0.96 106.11 7.57 7.57 7.57 2.46 2.46 2.46	+-				0.19						Gas Line & general exhaust
0.96 106.11 7.57 7.57	+		2.46		2.46						Mixing Room
0.96 0.96 106.11	+		7.57		7.57						Filling Lines & general exhaust
					106.11				0.96	0.96	Bottle Forming
PM10 NOX SO2 CO VOC Lead Methanol CI	1-	<u>C</u>	Methanol	Lead	VOC	CO	SO2	NOX	PM10	PM	

*Emission units are not limited and do not have controls.

•

T:\1487\03\State Capped Permit App\PTE Calcs.xds.xds)sum

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig):	Paint Characteristics Shell Color/Shade: Shell Condition:	Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput (gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	Company. Type of Tank: Description:	Identification User Identification: City: State:
-0.03	Gray/Medium Good	55.00 10,000.00 479.02 N 4,790,169.00 N	Horizontal Tank Methanol Tank Actual Methanol Emissions	TK002 St. Paul Minnesota
2			ч.,	

Vist.

Meteorological Data used in Emissions Calculations: St. Paul, Minnesota (Avg Atmospheric Pressure = 14.3 psia)

11/29/2005 11:48:09 AM

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

Methyl alcohol	Mixture/Component
50 50	3 8 3
AI	Month
52.72	Daily Tempe Avg.
43.73	Liquid Surf. atures (deg F) Min.
61,71	Max
47.79	Liquid Bulk (deg F)
1.1423	Vapor P Avg
0.8472	ressures (psie) Min.
1.5216	Max
32.0400	Vapor Mol. Weight
	Liquid Mess Fract
	Vapor Mass Fract
32.04	Mol. Weight
Option 2: A=7.897, B=1474.08, C=229.1	Basis for Vapor Pressure Calculations
3	

11/29/2005 11:48:09 AM

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

8		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emission
Methyl alcohol	957.13	599.69	1,556.

8

11/29/2005 11:48:09 AM

TANKS 4.0 ssions Report - Summary Fo

Emissions Report - Summary Format Tank Identification and Physical Characteristics

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig): 0.1	Paint Characteristics Shell Color/Shade: Gray/Medium Shell Condition: Good	Tank Dimensions55.Shell Length (ft):10.Diameter (ft):10.Volume (gallons):10.000.Tumovers:3.761.Net Throughput (gallyr):37,618,944.1Is Tank Heated (y/n):NIs Tank Underground (y/n):N	Company: Type of Tank: Description: Methanol Tank Potential Methar	User Identification: TK002 City: St. Paul State: Minnesota	
33 19 19 19 19 19 19 19 19 19 19 19 19 19		88888	ol Emissions		
		i Na da di Na di	50 700 - 1		े ू इ.स स.
a sure of the sure		2 2 ¹⁰ 17	е К. ж. 20	×	* 6

Meteorological Data used in Emissions Calculations: St. Paul, Minnesota (Avg Atmospheric Pressure = 14.3 psia)

11/29/2005 11:46:19 AM